40 research outputs found

    Enhancement of Entanglement via Incoherent Collisions

    Full text link
    In contrast to the general thought that the collisions are intrinsically dephasing in nature and detrimental to quantum entanglement at room or higher temperatures, here, we show that in the conventional ladder-type three-level electromagnetically induced transparency (EIT) configuration, when the probe field intensity is not very weak as compared to the pump field, the entanglement between the bright pump and probe fields can be remarkably enhanced with the increase of the collisional decay rates in a moderate range in an inhomogeneously-broadened atomic system. The strengthened entanglement results from the enhancement of constructive interference and suppression of destructive interference between one-photon and multi-photon transition pathways. Our results clearly indicate that the collisions offer a promising alternative to enhance entanglement at room or higher temperatures despite of the dephasing nature, which provides great convenience for experimental implementation, and opens new prospects and applications in realistic quantum computation and quantum information processing.Comment: 15 pages, 4 figure

    BehAVExplor: Behavior Diversity Guided Testing for Autonomous Driving Systems

    Full text link
    Testing Autonomous Driving Systems (ADSs) is a critical task for ensuring the reliability and safety of autonomous vehicles. Existing methods mainly focus on searching for safety violations while the diversity of the generated test cases is ignored, which may generate many redundant test cases and failures. Such redundant failures can reduce testing performance and increase failure analysis costs. In this paper, we present a novel behavior-guided fuzzing technique (BehAVExplor) to explore the different behaviors of the ego vehicle (i.e., the vehicle controlled by the ADS under test) and detect diverse violations. Specifically, we design an efficient unsupervised model, called BehaviorMiner, to characterize the behavior of the ego vehicle. BehaviorMiner extracts the temporal features from the given scenarios and performs a clustering-based abstraction to group behaviors with similar features into abstract states. A new test case will be added to the seed corpus if it triggers new behaviors (e.g., cover new abstract states). Due to the potential conflict between the behavior diversity and the general violation feedback, we further propose an energy mechanism to guide the seed selection and the mutation. The energy of a seed quantifies how good it is. We evaluated BehAVExplor on Apollo, an industrial-level ADS, and LGSVL simulation environment. Empirical evaluation results show that BehAVExplor can effectively find more diverse violations than the state-of-the-art

    A Unified Contrastive Transfer Framework with Propagation Structure for Boosting Low-Resource Rumor Detection

    Full text link
    The truth is significantly hampered by massive rumors that spread along with breaking news or popular topics. Since there is sufficient corpus gathered from the same domain for model training, existing rumor detection algorithms show promising performance on yesterday's news. However, due to a lack of training data and prior expert knowledge, they are poor at spotting rumors concerning unforeseen events, especially those propagated in different languages (i.e., low-resource regimes). In this paper, we propose a unified contrastive transfer framework to detect rumors by adapting the features learned from well-resourced rumor data to that of the low-resourced. More specifically, we first represent rumor circulated on social media as an undirected topology, and then train a Multi-scale Graph Convolutional Network via a unified contrastive paradigm. Our model explicitly breaks the barriers of the domain and/or language issues, via language alignment and a novel domain-adaptive contrastive learning mechanism. To enhance the representation learning from a small set of target events, we reveal that rumor-indicative signal is closely correlated with the uniformity of the distribution of these events. We design a target-wise contrastive training mechanism with three data augmentation strategies, capable of unifying the representations by distinguishing target events. Extensive experiments conducted on four low-resource datasets collected from real-world microblog platforms demonstrate that our framework achieves much better performance than state-of-the-art methods and exhibits a superior capacity for detecting rumors at early stages.Comment: A significant extension of the first contrastive approach for low-resource rumor detection (arXiv:2204.08143

    A Joint Framework Towards Class-aware and Class-agnostic Alignment for Few-shot Segmentation

    Full text link
    Few-shot segmentation (FSS) aims to segment objects of unseen classes given only a few annotated support images. Most existing methods simply stitch query features with independent support prototypes and segment the query image by feeding the mixed features to a decoder. Although significant improvements have been achieved, existing methods are still face class biases due to class variants and background confusion. In this paper, we propose a joint framework that combines more valuable class-aware and class-agnostic alignment guidance to facilitate the segmentation. Specifically, we design a hybrid alignment module which establishes multi-scale query-support correspondences to mine the most relevant class-aware information for each query image from the corresponding support features. In addition, we explore utilizing base-classes knowledge to generate class-agnostic prior mask which makes a distinction between real background and foreground by highlighting all object regions, especially those of unseen classes. By jointly aggregating class-aware and class-agnostic alignment guidance, better segmentation performances are obtained on query images. Extensive experiments on PASCAL-5i5^i and COCO-20i20^i datasets demonstrate that our proposed joint framework performs better, especially on the 1-shot setting

    Virus-induced gene complementation reveals a transcription factor network in modulation of tomato fruit ripening

    Get PDF
    Plant virus technology, in particular virus-induced gene silencing, is a widely used reverse- and forward-genetics tool in plant functional genomics. However the potential of virus technology to express genes to induce phenotypes or to complement mutants in order to understand the function of plant genes is not well documented. Here we exploit Potato virus X as a tool for virus-induced gene complementation (VIGC). Using VIGC in tomato, we demonstrated that ectopic viral expression of LeMADS-RIN, which encodes a MADS-box transcription factor (TF), resulted in functional complementation of the non-ripening rin mutant phenotype and caused fruits to ripen. Comparative gene expression analysis indicated that LeMADS-RIN up-regulated expression of the SBP-box (SQUAMOSA promoter binding protein-like) gene LeSPL-CNR, but down-regulated the expression of LeHB-1, an HD-Zip homeobox TF gene. Our data support the hypothesis that a transcriptional network may exist among key TFs in the modulation of fruit ripening in tomato

    Tubeless video-assisted thoracic surgery for pulmonary ground-glass nodules: expert consensus and protocol (Guangzhou)

    Get PDF
    corecore